QUICKSTART FOR 7558
CALIBRATION PROCEDURE.

1) Power unit on and allow a 10-15 minute warm-up period.
2) Install the supplied or required shunt resistor to pins “3 & 10”.
3) Make sure the load cell and indicator have the proper connections.
4) Verify there is no load being applied to the sensor at this time. If you are performing a static cal, please continue, if you are performing a shunt calibration, please begin on line (21).
5) Depressing the **PAR** key allows the user to enter into the program mode, and also allows you to advance to the next parameter.
6) The **FI** and **F2** keys are used to scroll through the parameters.
7) To enter the **INP-PARAMETER** depress the **PAR** key.
8) Using the arrow keys will allow you to display the input **RANGE**.
9) The selection in this parameter is critical. Please select the input range that corresponds to the external signal using the arrow keys:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Range resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02uv</td>
<td>+/- 24 mV</td>
</tr>
<tr>
<td>0.2uv</td>
<td>+/- 240 mV</td>
</tr>
</tbody>
</table>

NOTE: Internal jumpers must match

10) Depress the **PAR** key, this will advance to **dECPt**, select the decimal point at this time.
11) Depress the **PAR** key, this will advance to **round**, this parameter changes the count by of the display.
12) Depress the **PAR** key, this will advance to **FILtr**, this is a digital filter, which is used to steady input display.
13) Depress the **PAR** key, this will advance to **bAND**t, this will set the count by for the display.
14) Depress the **PAR** key, this will advance to **Pts**, this will set the scaling points, normally the calibration is acquired with a **two point** calibration, unless the linearity is a factor.
15) Depress the PAR key, this will advance to STYLE, this function allows you to scale the actual input. Choose APLY for actual static loading.

16) Depress the PAR key, this will advance to INP1, this function displays the live zero input with no load applied.

17) Depress the PAR key, this will advance to DSP1, enter the corresponding zero display value. The decimal point follows the DECPT selection.

18) Depress the PAR key, this will advance to INP2, apply the known full scale load at this time. This will display the mV/V reading at full scale. (Follow the same procedure if using more than two scaling points).

19) Depress the PAR key, this will advance to DSP2, enter the corresponding full scale display value. (Follow the same procedure if using more than two scaling points).

20) Depress the PAR key twice to exit and save.

SHUNT CALIBRATION METHOD

21) Follow or repeat same steps (1-14). Remember to keep the shunt toggle switch in the middle neutral position.

22) Depress the PAR key, this will advance to STYLE, this function allows you to scale the actual input. Choose APLY, for the shunt method. This will allow for the user to enter the known input values. Depress the PAR key, this will advance to INP1, this function displays the live zero input with no load applied.

23) Depress the PAR key, this will advance to DSP1, enter the corresponding zero display value. The decimal point follows the DECPT selection.

24) Depress the PAR key; this will advance to INP2, toggle the shunt calibration switch to the direction in, which you are calibrating. (Up for a positive shunt, down for a negative shunt). This will display the mV/V reading at the shunt scale. (Follow the same procedure if using more than two scaling points).

25) Depress the PAR key, this will advance to DSP2, enter the corresponding shunt scale display value. (Follow the same procedure if using more than two scaling points).

26) Depress the PAR key twice to exit and save.